Mathematical Foundations of Infinite-Dimensional Statistical Models:

4.1 Definitions and Basic Approximation Theory

이종진

Seoul National University

ga0408@snu.ac.kr

July 06, 2018

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Notation and Preliminaries

- $\blacktriangleright L_p(A), L_\infty(A)$
- C(A) denotes the space of continuous functions on A
- $C_u(A)$ denotes the space of uniformly continuous functions on A.
- C_{per}(A) denotes the space of continuous periodic functions on A,
 f(a)=f(b), when A is a half-open bounded interval with endpoints a,b
- ▶ The L_p Sobolev space of order $m \in \mathbb{N}$

 $H_{p}^{m}(A) = \{ f \in L^{p} : D^{j}f \in L^{p} \forall j = 1, \dots, m : \|f\|_{H_{p}^{m}(A)} \equiv \|f\|_{p} + \|D^{m}f\|_{p} < \infty \}$

Notation and Preliminaries : Weak derivative

For A ⊆ ℝ an interval, a function f ∈ L^p(A) is said to be weakly differentiable if there exists a locally integrable function Df – the weak derivative of f – such that

$$\int_{A} f(u)\phi'(u)du = -\int_{A} Df(u)\phi(u)du$$

for every infinitely differentiable function ϕ of compact support in the interior of A.

▶ The L_p - Sobolev space of order $m \in \mathbb{N}$

 $H_{p}^{m}(A) = \{ f \in L^{p} : D^{j}f \in L^{p} \forall j = 1, \dots, m : \|f\|_{H_{p}^{m}(A)} \equiv \|f\|_{p} + \|D^{m}f\|_{p} < \infty \}$

Notation and Preliminaries

► *C^m*(*A*),

 $C^{m}(A) = \{f^{(j)} \in C_{u}(A) : \forall j = 1, \dots, m : \|f\|_{C^{m}(A)} \equiv \|f\|_{\infty} + \|f^{(m)}\|_{P} < \infty\}$

- $C^{\infty}(A)$ denotes the space of infinitely differentiable functions defined on A
- C₀[∞](A) is the subspace which consists of all φ ∈ C[∞](A) that have compact support in the interior of A.
- Schwartz space S(ℝ) consists of all functions f ∈ C[∞](ℝ) such that all derivatives f^(α), α ≥ 0, exist and decay at ±∞ faster than any inverse polynomial.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Notation and Preliminaries : Convolution

For measurable functions f,g, defined on \mathbb{R} , their convolution is

$$f * g(x) \equiv \int_{\mathbb{R}} f(x - y)g(y)dy, x \in \mathbb{R}$$

- ▶ If $f \in L^{P}(\mathbb{R}), g \in L^{q}(\mathbb{R}), 1 \leq p, q \leq \infty$ such that 1/p + 1/q = 1then, $f * g \in C(\mathbb{R})$ and $||f * g||_{\infty} \leq ||f||_{p} ||g||_{q}$ (Hölder's inequality)
- If f ∈ L^P(ℝ), g ∈ L¹(ℝ) then, f * g is well defined a.e., and ||f * g||_p ≤ ||f||_p||g||₁ (Minkowski's inequality)
- ▶ If $f \in C(\mathbb{R}), g \in L^1(\mathbb{R})$

then, f * g is defined everywhere, and $f * g \in C(\mathbb{R})$

Notation and Preliminaries : Convolution

We can also define

$$f*\mu(x) = \int_{\mathbb{R}} f(x-y) d\mu(y), \quad x \in \mathbb{R}$$

for $\mu \in M(\mathbb{R})$, where $M(\mathbb{R})$ denotes the spaces of finite signed measures on \mathbb{R} , and one has likewise $||f * \mu||_{\rho} \leq ||f||_{\rho} |\mu|(\mathbb{R})$, where $|\mu|$ is the total variation measure of μ .

For a function $f \in L^1(\mathbb{R})$, Fourier transform

$$\mathcal{F}[f](u) \equiv \hat{f}(u) = \int_{\mathbb{R}} f(x) e^{itx} dx, u \in \mathbb{R}$$

▶ If $f \in L^1(\mathbb{R})$ is such that $\hat{f} \in L^1(\mathbb{R},)$ the Fourier inversion theorem

$$\mathcal{F}^{-1}(\hat{f}) \equiv rac{1}{2\pi} \int_{\mathbb{R}} e^{iu \cdot} \hat{f}(u) du = f$$
 a.e.

One immediately has

$$\|\hat{f}\|_{\infty} \le \|f\|_{1}, \quad \|f\|_{\infty} \le \frac{1}{2\pi} \|\hat{f}\|_{1}$$

the (inverse) Fourier transformation is injective from L^1 to L^∞

<ロト</p>

• $f \in L^1 \cap L^2$, Plancherel's theorem states that

$$\|f\|_2 = rac{1}{\sqrt{2\pi}}\|\hat{f}\|_2, \quad \langle f,g
angle = rac{1}{2\pi}\langle \hat{f},\hat{g}
angle$$

and $\sqrt{2\pi}\mathcal{F}$ extends continuously to an isometry from L^2 to L^2 Some basic properties

1.
$$\mathcal{F}[f(\cdot - k)](u) = e^{-iku}\hat{f}(u)$$

2. $\mathcal{F}[f(a\cdot)](u) = a^{-1}\hat{f}(u/a), \quad a > 0$
3. $\mathcal{F}[f * g](u) = \hat{f}(u)\hat{g}(u), \quad \mathcal{F}[f * \overline{f(-\cdot)}](u) = |\hat{f}(u)|^2$
4. $\frac{d^N}{(du)^N}\hat{f}(u) = \int_{\mathbb{R}} f(x)(-ix)^N e^{-ixu} dx, (iu)^N \hat{f}(u) = \mathcal{F}[D^N f](u)$

Fourier transform \mathcal{F} maps the Schwartz space $\mathcal{S}(\mathbb{R})$ into itself.

- Instead of ℝ the group is (0, 2π] with addition modulo 2π, we have similar results.
- In particular, any 2π-periodic f ∈ L²((0, 2π]), decomposes into its Fourier series

$$f = \sum_{k \in \mathbb{Z}} c_k e^{ik}, \text{ in } L^2((0, 2\pi]), \quad c_k \equiv c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx, \{c_k\} \in \ell_2$$

in fact, f → {c_l} gives a Hilbert space isometry between L²((0, 2π]) and l₂ If, further, {c_k} ∈ l₁, then the Fourier series of f converges a.e. on (0, 2π] (pointwise if f is continuous)

Fourier inversion and Fourier series can be linked to each other by the Poisson summation formula: if f ∈ L¹(ℝ), then the periodised sum

$$S(x) = \sum_{I \in \mathbb{Z}} f(x + 2\pi I), \quad x \in (0, 2\pi]$$

converges a.e., belongs to $L^1((0,2\pi])$ and the Fourier coefficients of S are given by

$$c_k(S) = \frac{1}{2\pi}\hat{f}(k) = \mathcal{F}^{-1}[f](-k)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Notation and Preliminaries : The Schwartz space

• Define a countable familiy of seminorms on $\mathcal{S}(\mathbb{R})$

$$\|f\|_{m,r} = \max_{\alpha \leq r} \left\| \left(1 + |\cdot|^2 \right)^m f^{(\alpha)} \right\|_{\infty}, \quad m,r \in \mathbb{N} \cup \{0\}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□▶ ●��?

11/32

these seminorms provide a metrisable locally convex topology on $\mathcal{S}(\mathbb{R})$

• $\mathcal{S}(\mathbb{R})$ is complete, and the set $C_0^{\infty}(\mathbb{R})$ is dense in $\mathcal{S}(\mathbb{R})$

Notation and Preliminaries : The Schwartz space

- S^{*} ≡ S(ℝ)^{*} is the topological dual space of S(ℝ), tempered distributions, or Schwartz distributions, equipped with the weak topology: T_n → T in S^{*} if T_n(φ) → T(φ) for every φ ∈ S
- Weak differentiation is continuous operation from S^* to S^*
- ▶ μ is a finite measure or any signed measure of at most polynomial growth at $\pm \infty(|\mu|(x; |x| < R) \lesssim (1 + |R|^2)^l$ for all R > 0, some $l \in \mathbb{N}$) then, the action of μ on $S(\mathbb{R})$ defines an element of $S^*(\mathbb{R})$.

$$f\mapsto \int_{\mathbb{R}} f d\mu$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

▶ any $f \in L^p$ acting on $S(\mathbb{R})$ by $\phi \mapsto \int f \phi$ defines an element of $S^*(\mathbb{R})$

Notation and Preliminaries : The Schwartz space

► Fourier transform of T ∈ S* as the element FT of S* whose action on S is given by

$$\phi \mapsto \mathcal{F}T(\phi) = T(\hat{\phi})$$

For $T = f \in L^1$,

$$\int_{\mathbb{R}} \hat{f}(u)\phi(u)du = \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-iux} f(x)\phi(u)dudx = \int_{\mathbb{R}} f(u)\hat{\phi}(u)du$$

In particular, the Fourier transform maps S^* continuously onto itself, and $\mathcal{F}^{-1}[\mathcal{F}T] = T$ in S^* .

We can by the same principles define periodic Schwartz distributions. For A any interval (0,a]

Approximate Identities

Convolution with Kernels

For $f : \mathbb{R} \to \mathbb{R}$, we can define the convolution

$$K_h * f(x) = \int_{\mathbb{R}} K_h(x-y)f(y)dy = \int_{\mathbb{R}} f(x-y)K_h(y)dy = f * K_h(x)$$

of f with a suitably 'localised' kernel function

$$K_h(x) = \frac{1}{h}K\left(\frac{x}{h}\right), \quad h > 0, x \in \mathbb{R}$$

where K is typically chosen to be bounded and integrable and in particular satisfies $\int_{\mathbb{R}} K(x) dx = 1$

▶ so as $h \rightarrow 0$ the function K_h looks more and more like a point mass δ_0 at 0

$$f * K_h \sim f * \delta_0 = \int_{\mathbb{R}} f(x - y) d\delta_0(y) = f(x)$$

Proposition (4.1.1)

Let $f : \mathbb{R} \to \mathbb{R}$, be a measurable function, and let $K \in L^1$ satisfy $\int_{\mathbb{R}} K(x) dx = 1.$

- 1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_h * f(x)$ converges to f(x) as $h \to 0$.
- 2. If f is bounded and uniformly continuous on \mathbb{R} , then $\|K_h * f f\|_{\infty} \to 0$ as $h \to 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

15/32

3. If $f \in L^p$ for some $1 \le p < \infty$, then $\|K_h * f - f\|_p \to 0$ as $h \to 0$

Ortho-normal basis

- Let L ⊂ Z be an index set. A family of functions {e_l : l ∈ L} ⊂ L²(A) is called an ortho-normal basis.
 - 1. $\langle e_k, e_l \rangle = 0$ whenever $k \neq l$ and $\langle e_l, e_l \rangle = \|e_l\|_2^2 = 1$ otherwise.
 - 2. if the linear span

$$\left\{\sum_{l\in\mathcal{L}}c_le_l:c_l\in\mathbb{R}\right\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

16/32

is norm-dense in $L^2(A)$

Projection kernel

- V the closed subspace of L²(A) generated by the linear span of {e_l : l ∈ L'} for some subset L' ⊂ L,
- $\pi_V(f)$ is the best L^2 -approximation of f from the subspace V.

$$\pi_V(f)(x) = \sum_{l \in \mathcal{L}'} \langle f, e_l \rangle e_l(x) = \int_A \sum_{l \in \mathcal{L}'} e_l(x) e_l(y) f(y) dy$$

we define the projection kernel

$$\pi_V(f)(x) = \int_A K_V(x, y) f(y) dy, \quad K_V(x, y) = \sum_{l \in \mathcal{L}'} e_l(x) e_l(y)$$

We shall now discuss some classical examples of ortho-normal bases of L² including some basic historical examples of wavelet bases, which will be introduced in full generality later.

The Trigonometric Basis

If A = (0, 1], then the trigonometric basis of L²((0, 1]) consists of the complex trigonometric polynomials

$$\left\{e_{l}=e^{2\pi i l}=\cos(2\pi l\cdot)+i\sin(2\pi l\cdot):l\in\mathbb{Z}
ight\}$$

The partial sums can be represented as

$$S_N(f)(x) = \sum \langle f, e_l \rangle e_l(x) = \int_0^1 D_N(x-y)f(y)dy = D_N * f(x)$$

where

$$D_N(x) = \sum_{|l| \le N} e^{2\pi i l x} = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}$$

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ 콜 · 의식(?) 18/32

- Dirichlet kernel, Proposition 4.1.1. does not hold, D_N is not bounded uniformly in L¹(A)
- ▶ Convergence of $S_N(f) \to f$ in $L^p(A), p \neq 2$, or in $C_u(A)$ does not hold in general
- One way around this problem is based Fejer kernel

$$F_m = \frac{1}{m+1} \sum_{k=0}^m D_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Haar Basis

$$\blacktriangleright \left\{ \phi_{jk} \equiv 2^{j/2} \phi\left(2^{j}(\cdot) - k\right), k \in \mathbb{Z} \right\}, \quad j \in \mathbb{N} \cup \{0\}$$

▶ Partition \mathbb{R} into dyadic intervals $(k/2^j, (k+1)/2^j]$

►
$$K_j(x, y) = 2^j K (2^j x, 2^j y) = \sum_{k \in \mathbb{Z}} 2^j \phi (2^j x - k) \phi (2^j y - k) = \sum_{k \in \mathbb{Z}} \phi_{jk}(x) \phi_{jk}(y)$$

It has some comparable approximation properties

20/32

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition (4.1.2)

Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function, and let K be the Haar projection kernel.

- 1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_j(f)(x)$ converges to f(x) as $j \to \infty$.
- 2. If f is bounded and uniformly continuous on \mathbb{R} , then $\|K_j(f) f\|_{\infty} \to 0$ as $j \to \infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

21/32

3. If $f \in L^p$ for some $1 \le p < \infty$, then $\|K_j(f) - f\|_p \to 0$ as $j \to \infty$

The Haar Basis

► *K_j*(*f*)

$$K_j(f) = K_0(f) + \sum_{l=0}^{j-1} (K_{l+1}(f) - K_l(f))$$

an elementary computation shows that

$$\begin{aligned} \mathcal{K}_{l+1}(f) - \mathcal{K}_{l}(f) &= \sum_{k \in \mathbb{Z}} \langle \psi_{lk}, f \rangle \, \psi_{lk} \\ \text{where } \psi = \mathbf{1}_{[0,1/2]} - \mathbf{1}_{(1/2,1]}, \psi_{lk}(x) = 2^{l/2} \psi \left(2^{l} x - k \right) \\ f &= \sum_{k \in \mathbb{Z}} \langle \phi_{k}, f \rangle \, \phi_{k} + \sum_{l=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle \psi_{lk}, f \rangle \, \psi_{lk} \end{aligned}$$

{φ_k, ψ_{lk} : k ∈ ℤ, l ∈ ℕ ∪ {0}} forms an ortho-normal basis of L² known as the Haar basis.

<ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < 目 > 22/32

The Shannon Basis

Consider a function f ∈ Vπ, where Vπ is the space of continuous functions f ∈ L² which have (distributional) Fourier transform f supported in [−π, π]
 express f with trigonometric basis.

$$\hat{f} = \sum_{k \in \mathbb{Z}} c_k e^{ik(\cdot)}, \quad \text{ in } L^2([-\pi,\pi])$$

with Fourier coefficients given by

$$c_k = c_k(\hat{f}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-iku} \hat{f}(u) du = f(-k)$$

the last identity following from (4.5) if $f \in L^1$

$$f(x) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} c_k \int_{-\pi}^{\pi} e^{iu(k+x)} du$$
$$= \sum_{k \in \mathbb{Z}} f(k) \frac{\sin \pi (x-k)}{\pi (x-k)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

The Shannon Basis

 φ̂ = 1_[−π,π], and its interger translates of the function φ are ortho-normal in L². (by Plancherel's theorem.)

•
$$\{\phi_k = \phi(\cdot - k) : k \in \mathbb{Z}\}$$
 is an ortho-normal in \mathcal{V}_{π}

 $\blacktriangleright \left\{ \phi_{jk} = 2^{j/2} \phi\left(2^{j}(\cdot) - k\right) : k \in \mathbb{Z} \right\} \text{ span } \mathcal{V}_{2^{j}\pi}$

▶ The projection of $f \in L^2(\mathbb{R})$ onto $\mathcal{V}_{2^j\pi}$ is

$$\Pi_{\mathcal{V}_{2^{j}\pi}}(f) = \sum_{k} \langle \phi_{jk}, f \rangle \phi_{jk}$$

ション ふゆ アメリア メリア しょうくしゃ

 \blacktriangleright Like, haar basis, we can telescope these projections, by set ψ

$$\psi = \mathcal{F}^{-1} \left[\mathbf{1}_{[-2\pi, -\pi]} + \mathbf{1}_{[\pi, 2\pi]} \right]$$

► the functions $\left\{\psi_{lk} = 2^{l/2}\psi\left(2^{l}\cdot -k\right) : k \in \mathbb{Z}\right\}$ form an ortho-normal basis for $W_{l} = \mathcal{V}_{2^{l}\pi} \ominus \mathcal{V}_{2^{l-1}\pi}$

$$f = \sum_k raket{\phi_k, f} \phi_k + \sum_{l=0}^\infty \sum_k raket{\psi_{lk}, f} \psi_{lk}$$

▶ the ortho-normal 'Shannon' basis $\{\phi_k, \psi_{lk} : k \in \mathbb{Z}, l \in \mathbb{N} \cup \{0\}\}$

► f

We would like to construct ortho-normal bases of L² that are in a sense interpolating' between the Haar and Shannon bases, and this is what leads to wavelet theory, as we shall see later.

Approximation in Sobolev Spaces by General Integral Operators

Consider the general framework of integral operators.

•
$$f \mapsto K_h(f) = \int_{\mathbb{R}} K_h(\cdot, y) f(y) dy = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{\cdot}{h}, \frac{y}{h}\right) f(y) dy, \quad h > 0$$

► Calderon-Zygmund operators, with the obvious notational conversion $h = 2^{-j}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposition (4.1.3)

Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function, let K_h be as above and suppose that $\int_{\mathbb{R}} \sup_{v \in \mathbb{R}} |K(v, v - u)| du < \infty, \int_{\mathbb{R}} K(x, y) dy = 1$ for every $x \in \mathbb{R}$. Then we have

- 1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_h(f)(x)$ converges to f(x) as $h \to 0$.
- 2. If f is bounded and uniformly continuous on \mathbb{R} , then $\|K_h(f) f\|_{\infty} \to 0$ as $h \to 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

27/32

3. If $f \in L^p$ for some $1 \le p | < \infty$, then $\|K_h(f) - f\|_p \to 0$ as $h \to 0$

To investigate further approximation properties we shall impose following conditions.

$$-$$
 (**M**): $c_N(K) \equiv \int_{\mathbb{R}} \sup_{v \in \mathbb{R}} |K(v, v - u)| |u|^N du < \infty$

- (**P**): For every
$$v \in \mathbb{R}$$
 and $k = 1, \dots, N-1$

$$\int_{\mathbb{R}} \mathcal{K}(v, v+u) du = 1$$
 and $\int_{\mathbb{R}} \mathcal{K}(v, v+u) u^k du = 0$

Proposition (4.1.5)

Let K be a kernel that satisfies Condition (M), (P) for some $N \in \mathbb{N}$ and let

$$c(m, K) = c_m(K) \int_0^1 \frac{(1-t)^{m-1}}{(m-1)!} dt$$

for any integer $m \leq N$.

1. If $f \in H^m_p(\mathbb{R}), 1 \leq p < \infty$, then

$$\|K_h(f) - f\|_p \le c(m, K) \|D^m f\|_p h^m$$

2. If $f \in C^m(\mathbb{R})$, then

$$\left\|K_{h}(f)-f\right\|_{\infty}\leq c(m,K)\left\|f^{(m)}\right\|_{\infty}h^{m}$$

< □ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ ○ ♀ ♡ ♀ (?) 29/32

Littlewood-paley Decomposition

- The main idea behind the Haar and Shannon bases of L² was a partition of unity either in the time or the frequency domain.
- However, the functions used in the partition are not smooth or indicatios of intervals.
- Use smooth functions, relaxing the requirement of orthgonality of the functions involved.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Littlewood-paley Decomposition

• Take $\phi \in \mathcal{S}(\mathbb{R})$ to be symmetric function such that

$$\hat{\phi}\in \mathit{C}^\infty_0(\mathbb{R}), \hspace{1em} \mathsf{supp}(\hat{\phi})\in [-1,1], \hspace{1em} \hat{\phi}=1 \hspace{1em}\mathsf{on} \hspace{1em} \left[-rac{3}{4},rac{3}{4}
ight]$$

Define, moreover,

$$\hat{\psi} = \hat{\phi}\left(rac{\cdot}{2}
ight) - \hat{\phi}$$
 equivalent $\psi = 2\phi(2\cdot) - \phi$

so that $\hat{\psi}$ is supported in $\{2^{-1} \leq |u| \leq 2\}$. If we set $\psi_{2^{-j}} = 2^j \psi(2^j)$, then $\overline{\psi_{2^{-j}}} = \hat{\psi}(\cdot/2^j)$, and by a telescoping sum, for every $u \in \mathbb{R}$

$$\hat{\phi}(u) + \sum_{j=0}^{\infty} \hat{\psi}\left(u/2^{j}\right) = \lim_{J \to \infty} \left(\hat{\phi}(u) + \sum_{j=0}^{J-1} \hat{\psi}\left(u/2^{j}\right)\right) = \lim_{J} \hat{\phi}\left(u/2^{J}\right) = 1$$

< □ > < 큔 > < 클 > < 클 > · 클 > · 즷 < ♡ < ○ 31/32

Littlewood-paley Decomposition

For f with Fourier transform $\hat{f}(u)$ and every $u \in \mathbb{R}$,

$$\hat{f}(u) = \hat{f}(u)\hat{\phi}(u) + \sum_{i=0}^{\infty} \hat{\psi}\left(u/2^{i}\right)\hat{f}(u)$$

Then, f is

$$f=f\ast\phi+\sum_{j=0}^{\infty}f\ast\psi_{2^{-j}}=\lim_{J\rightarrow\infty}f\ast\phi_{2^{-j}}$$

where $\phi_{2^{-}} - J = 2^{J}\phi\left(2^{J}\cdot\right)$

- since φ̂(0) = 1, we see that ∫ φ = 1, and since φ ∈ S(ℝ), we conclude from Proposition 4.1 .1 that the last limit holds in L^p whenever f ∈ L^p
- Moreover, ∫_ℝ x^kφ(x)dx equals zero for every k ∈ N because D^kF[φ](0) does, so Proposition 4.1 .5 applies for every N with h = 2^{-j}.