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Notation and Preliminaries

> Lp(A), Lo(A)
> C(A) denotes the space of continuous functions on A
» C,(A) denotes the space of uniformly continuous functions on A.

» Cper(A) denotes the space of continuous periodic functions on A,

f(a)=f(b), when A is a half-open bounded interval with endpoints a,b

» The L, - Sobolev space of order m € N

Hy(A) ={f € L”: D'f € LPYj=1,....m: ||fllumea = | flls+]|D"fllp < oo}
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Notation and Preliminaries : Weak derivative

» For A C R an interval, a function f € LP(A) is said to be weakly
differentiable if there exists a locally integrable function Df — the weak

derivative of f— such that

/Af(u)qb'(u)du: —/ADf(u)qb(u)du

for every infinitely differentiable function ¢ of compact support in the

interior of A.

» The L, - Sobolev space of order m € N

Hy(A) ={feL’: D'f elPYj=1,....m: ||fHH£n(A) = ||f]lp+]ID"fl, < oo}
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Notation and Preliminaries

> C"(A),
C™(A) = {f9 € Cu(A) : Vi =1,...,m: ||Fllemiay = || FllotIIF™lp < 00}

» C°°(A) denotes the space of infinitely differentiable functions defined on A
» C5°(A) is the subspace which consists of all ¢ € C*°(A) that have
compact support in the interior of A.

» Schwartz space S(R) consists of all functions f € C*°(R) such that all
derivatives f(*), o« > 0, exist and decay at oo faster than any inverse

polynomial.
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Notation and Preliminaries : Convolution

» For measurable functions f,g, defined on R, their convolution is

Feg(x) = / Fx — y)g(y)dy, x € B

> If f € LP(R), g € LY(R),1 < p,q < oo such that 1/p+1/qg =1
then, f x g € C(R) and ||f * glloo < [|f]lpllgllq (HSlder's inequality)
> If f ¢ LP(R), g € L*(R)
then, f x g is well defined a.e., and ||f * g||, < ||f]lsllglls (Minkowski’'s

inequality)

> If f € C(R),g € [*(R)
then, f x g is defined everywhere, and f x g € C(R)
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Notation and Preliminaries : Convolution

» We can also define

o pu(x) = / f(x - y)duly), x€R

for p € M(R), where M(R) denotes the spaces of finite signed measures
on R, and one has likewise || * ||, < ||f]lplee|(R), where |u| is the total

variation measure of .
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Notation and Preliminaries : Fourier transform

> For a function f € L*(R), Fourier transform

Ff](u)

fu) = / f(x)e™dx,u e R
R

> If f € [*(R) is such that f € L*(R,) the Fourier inversion theorem

_7:—1(f) = i‘/R i”'f(u)du =f a.e.

27
» One immediately has

. 1 4
Flloo < Ifllzs IIflloe < =—|IF
Flloo < Wfllzs Nfllee < - 1F 1l

the (inverse) Fourier transformation is injective from L' to L™
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Notation and Preliminaries : Fourier transform

> f c 1N L2 Plancherel’s theorem states that

12
Il = (F.8) = 5-(F.8)

=7l
and /27 F extends continuously to an isometry from L2 to L2
» Some basic properties
1. FIf(- — K](u) = e_ik”f(u)
2. Flf(a)(v) = a~f(u/a), a>0
3. f[f*g](“) = f(u)g(u),  FIf « F(—))(u) = [f(u)
4

. (:u)’V =[x FO)(—ix) YWe=ugx, (iu)Nf(u) = [DNf} (u)

» Fourier transform F maps the Schwartz space S(R) into itself.
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Notation and Preliminaries : Fourier transform

> Instead of R the group is (0, 27] with addtion modulo 27, we have similar

results.

> In particular, any 27-periodic f € L?((0,2x]), decomposes into its Fourier
series
1 27

> f(x)e ™dx, {ck} € 2

f= che in £2((0,27]), o = a(f) =

kez
> in fact, f — {c/} gives a Hilbert space isometry between L?((0,27]) and
L2 If, further, {c(} € ¢1, then the Fourier series of f converges a.e. on

(0,27] (pointwise if f is continuous)
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Notation and Preliminaries : Fourier transform

» Fourier inversion and Fourier series can be linked to each other by the
Poisson summation formula: if f € L'(R), then the periodised sum
S(x)=>_f(x+2rl), xe(0,27]

Iez
converges a.e., belongs to L*((0,2n]) and the Fourier coefficients of S are
given by

12 -1
= —f(k) = FY[f])(~k
e(S) = 5= F(k) = FHA(—K)
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Notation and Preliminaries : The Schwartz space

» Define a countable familiy of seminorms on S(R)

Fllmr = max | (141 7)7 F9|| . m,reNU{0}

these seminorms provide a metrisable locally convex topology on S(R)

> S(R) is complete, and the set C5°(R) is dense in S(R)
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Notation and Preliminaries : The Schwartz space

> S* =S(R)* is the topological dual space of S(R), tempered distributions,
or Schwartz distributions, equipped with the weak topology: T, — T in
S* if To(¢p) — T(¢) for every ¢p € S

» Weak differentiation is continuous operation from S* to §*

» 1 is a finite measure or any signed measure of at most polynomial growth
at oo(|u|(x; [x| < R) S (1 +|R[?) for all R > 0, some I € N)
then, the action of 1 on S(R) defines an element of S*(R).

fr—)/fdp
R

> any f € L? acting on S(R) by ¢ — [ f¢ defines an element of S*(R)
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Notation and Preliminaries : The Schwartz space

» Fourier transform of T € S* as the element FT of S* whose action on S
is given by
¢ FT(9) = T(d)

> For T=Ffell

/ F(u)p(u)du = / / e " f(x)p(u)dudx = / f(u)d(u)du

R rJR R
In particular, the Fourier transform maps S* continuously onto itself, and
FUFT]=Tin S

» We can by the same principles define periodic Schwartz distributions. For

A any interval (0,a]
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Approximate |dentities

» Convolution with Kernels

» For f : R — R, we can define the convolution
Kp * f(x) = / Kn(x — y)f(y)dy = / f(x —y)Kn(y)dy = f x Kn(x)
R R

of f with a suitably 'localised’ kernel function

Kh(X):%K(%), h>0,xecR

where K is typically chosen to be bounded and integrable and in particular
satisfies [, K(x)dx =1

» so as h — 0 the function K} looks more and more like a point mass o at 0

fxKyp~fxdo Z/Rf(x—y)déo(y) = f(x)
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Approximate |dentities

Proposition (4.1.1)

Let f : R — R, be a measurable function, and let K € L' satisfy
Jp K(x)dx = 1.

1. If f is bounded on R and continuous at x € R, then Ky, x f(x) converges

to f(x) as h — 0.

2. If f is bounded and uniformly continuous on R, then |Kyx f — f||_ — 0

ash—0

3. Iff € L? for some 1 < p < oo, then ||Ky* f —f[|, +0ash—0
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Ortho-normal basis

> Let £ C Z be an index set. A family of functions {e; : | € L} C L[*(A) is

called an ortho-normal basis.

1. (ex,e/) = 0 whenever k # | and (e, ¢/) = ||e,||§ = 1 otherwise.

Z ciep ¢ €R
leL

2. if the linear span

is norm-dense in L2(A)
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Projection kernel

> V the closed subspace of L?(A) genertated by the linear span of
{e/: 1 € L'} for some subset L' C L,

» my(f) is the best L? -approximation of f from the subspace V .
mv(f)(x) = Z (f, er) er(x /Z e(x)e(y)f(y)dy
lec’ Alec
» we define the projection kernel

T (F)(x) = / Ku(o)f()dy,  Ku(xy) = 3 ex)ely)

lec’!

> We shall now discuss some classical examples of ortho-normal bases of L2

including some basic historical examples of wavelet bases, which will be

introduced in full generality later.
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The Trigonometric Basis

> If A= (0,1], then the trigonometric basis of L?((0,1]) consists of the

complex trigonometric polynomials
{e/ = &*™" = cos(27/-) + isin(2nl-) : | € Z}
» The partial sums can be represented as
Su(N)(x) = 3 (F.en) enlx) = / Dl — y)F(y)dy = Dy + F(x)
where

Dn(x) = Z o2k _ sin((2N + 1)mx)

i sin(mx)
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» Dirichlet kernel, Proposition 4.1.1. does not hold, Dy is not bounded
uniformly in L'(A)
» Convergence of Sy(f) — f in LP(A), p # 2, or in C,(A) does not hold in

general

» One way around this problem is based Fejer kernel
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The Haar Basis

> {quk =226 (J()— k) k€ z} , jeNuU{o}

> Partition R into dyadic intervals (k/2/, (k + 1)/2/]

> Ki(x,y) = 2K (Zx,2y) =3, , 270 (¥x — k) ¢ (2y — k) =
> kez ik (X) ik (y)

» |t has some comparable approximation properties
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Proposition (4.1.2)

Let f : R — R be a measurable function, and let K be the Haar projection

kernel.
1. If f is bounded on R and continuous at x € R, then K;j(f)(x) converges to
f(x) as j — oco.

2. If f is bounded and uniformly continuous on R, then |K;(f) — f||__ — 0

(oo}

asj — oo

3. Iff € L” for some 1 < p < oo, then ||Kj(f) — f[|, = 0 as j — o0

21/32



The Haar Basis

> Kj(f)

j—1

Ki(f) = Ko(f) + ) (Kia(f) = Ki(f))
=0

an elementary computation shows that

Kia(F) = Ki(F) = > (W, £) i

keZ

where ¥ = 1j0,1/2] — 1(1/2,1], Yi(x) = 2’/2¢ (2IX - k)

F=> (b Flont+ DD (Wnf)vu
kEL 1=0 keZ

» {¢x, Y : k € Z,1 € NU{0}} forms an ortho-normal basis of L? known as

the Haar basis.
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The Shannon Basis

» Consider a function f € V., where V; is the space of continuous functions

f € L2 which have (distributional) Fourier transform f supported in [—7, 7]

> express f with trigonometric basis.

f= cheik(‘)7 in L*([—m, 7))

keZ

with Fourier coefficients given by
=)= L /W e M F(u)du = F(—K)
ke = or ) -

the last identity following from (4.5) if f € L'

1 T
f(X) = E Z Ck/ elu(k+x)du
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The Shannon Basis

> 9(X) = sin(nx)/(rx)
> b= 1=, and its interger translates of the function ¢ are ortho-normal

in L. (by Plancherel’s theorem.)

> {¢px = ¢(- — k) : k € Z} is an ortho-normal in V;
> {¢jk =224 (21'(.) — k) tk € Z} span V,i.
> The projection of f € L*(R) onto V. is

:E:: (Djic, £) Dk
k
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Like, haar basis, we can telescope these projections, by set ¥

w = ]:71 [1[727r,77r] + 1[7r,27'r]j|
the functions {d)/k =212y (2' . —k) ke Z} form an ortho-normal basis
for Wi = Vyi © Vor-1,

f

Z Pk, f ¢k+zz Yie, £) Y

P
the ortho-normal 'Shannon’ basis {¢«, 9w : k € Z,1 € NU {0}}

We would like to construct ortho-normal bases of L2 that are in a sense
interpolating’ between the Haar and Shannon bases, and this is what leads

to wavelet theory, as we shall see later.
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Approximation in Sobolev Spaces by General Integral Operators

» Consider the general framework of integral operators.

> f Ki(f) = [o Kn(oy)F(y)dy = § o K (5, %) f(¥)dy, h>0
» Calderon-Zygmund operators, with the obvious notational conversion

h=27
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Proposition (4.1.3)
Let f : R — R be a measurable function, let K, be as above and suppose that
Jesup,er |K(v, v — u)|du < oo, [ K(x,y)dy =1 for every x € R. Then we
have
1. If f is bounded on R and continuous at x € R, then Kn(f)(x) converges to
f(x) as h— 0.
2. If f is bounded and uniformly continuous on R, then ||Ky(f) — f||., — 0

ash—0

3. Iff € L? for some 1 < p| < oo, then [|Ky(f) — f||, +0ash—0
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» To investigate further approximation properties we shall impose following
conditions.

- (M) : cn(K) = [psup,er |K(v, v — u)||ulNdu < oo
— (P): ForeveryveRand k=1,...,N—1

/K(v,v+u)du:1 and /K(v,v—l—u)ukdu:O
R R

28/32



Proposition (4.1.5)
Let K be a kernel that satisfies Condition (M), (P) for some N € N and let
_ m 1
c(m K) = cm K)/ (I;dt
for any integer m < N.

1. Iff € H7'(R),1 < p < oo, then
IKn(f) = fll, < c(m, K) || D"f]|, A"
2. If f € C™(R), then

IKn(F) = Flloe < clm, K)||F| A7
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Littlewood-paley Decomposition

» The main idea behind the Haar and Shannon bases of L2 was a partition

of unity either in the time or the frequency domain.

» However, the functions used in the partition are not smooth or indicatios

of intervals.

» Use smooth functions, relaxing the requirement of orthgonality of the

functions involved.
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Littlewood-paley Decomposition

> Take ¢ € S(R) to be symmetric function such that
. . \ 3 3
beGrm, swp(@)e 11l d=1on |33
Define, moreover,

1/3 = ¢A> (5) - <£ equivalentto 1 = 2¢(2-) — ¢

so that 1) is supported in {2_1 <Jul < 2} . If we set o,; = o) (2j.) ,
then ¢, =1 (-/2j) , and by a telescoping sum, for every u € R

&@Hia (u/zf) = Jim. (&(UHJZlu? (u/2j)> - |i5n¢3(u/21) —1
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Littlewood-paley Decomposition

> For f with Fourier transform #(u) and every u € R,

Fu) = Z (u/2/>
» Then, fis .
F=fxg+d fripyi= lim fxo,

j=0
where ¢, — J =27¢ (27.)
> since $(0) = 1, we see that [ ¢ = 1, and since ¢ € S(R), we conclude

from Proposition 4.1 .1 that the last limit holds in L? whenever f € LP

> Moreover, [, x“¢(x)dx equals zero for every k € N because D*F[¢](0)

does, so Proposition 4.1 .5 applies for every N with h =277 |
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