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Notation and Preliminaries

I Lp(A), L∞(A)

I C(A) denotes the space of continuous functions on A

I Cu(A) denotes the space of uniformly continuous functions on A.

I Cper (A) denotes the space of continuous periodic functions on A,

f(a)=f(b), when A is a half-open bounded interval with endpoints a,b

I The Lp - Sobolev space of order m ∈ N

Hm
p (A) = {f ∈ Lp : D j f ∈ Lp∀j = 1, . . . ,m : ‖f ‖Hm

p (A) ≡ ‖f ‖p+‖Dmf ‖p <∞}
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Notation and Preliminaries : Weak derivative

I For A ⊆ R an interval, a function f ∈ Lp(A) is said to be weakly

differentiable if there exists a locally integrable function Df− the weak

derivative of f− such that∫
A

f (u)φ′(u)du = −
∫
A

Df (u)φ(u)du

for every infinitely differentiable function φ of compact support in the

interior of A.

I The Lp - Sobolev space of order m ∈ N

Hm
p (A) = {f ∈ Lp : D j f ∈ Lp∀j = 1, . . . ,m : ‖f ‖Hm

p (A) ≡ ‖f ‖p+‖Dmf ‖p <∞}
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Notation and Preliminaries

I Cm(A),

Cm(A) = {f (j) ∈ Cu(A) : ∀j = 1, . . . ,m : ‖f ‖Cm(A) ≡ ‖f ‖∞+‖f (m)‖p <∞}

I C∞(A) denotes the space of infinitely differentiable functions defined on A

I C∞0 (A) is the subspace which consists of all φ ∈ C∞(A) that have

compact support in the interior of A.

I Schwartz space S(R) consists of all functions f ∈ C∞(R) such that all

derivatives f (α), α ≥ 0, exist and decay at ±∞ faster than any inverse

polynomial.

4/32



Notation and Preliminaries : Convolution

I For measurable functions f,g, defined on R, their convolution is

f ∗ g(x) ≡
∫
R
f (x − y)g(y)dy , x ∈ R

I If f ∈ LP(R), g ∈ Lq(R), 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1

then, f ∗ g ∈ C(R) and ‖f ∗ g‖∞ ≤ ‖f ‖p‖g‖q (Hölder’s inequality)

I If f ∈ LP(R), g ∈ L1(R)

then, f ∗ g is well defined a.e., and ‖f ∗ g‖p ≤ ‖f ‖p‖g‖1 (Minkowski’s

inequality)

I If f ∈ C(R), g ∈ L1(R)

then, f ∗ g is defined everywhere, and f ∗ g ∈ C(R)

5/32



Notation and Preliminaries : Convolution

I We can also define

f ∗ µ(x) =

∫
R
f (x − y)dµ(y), x ∈ R

for µ ∈ M(R), where M(R) denotes the spaces of finite signed measures

on R, and one has likewise ‖f ∗ µ‖p ≤ ‖f ‖p|µ|(R), where |µ| is the total

variation measure of µ.
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Notation and Preliminaries : Fourier transform

I For a function f ∈ L1(R), Fourier transform

F [f ](u) ≡ f̂ (u) =

∫
R
f (x)e itxdx , u ∈ R

I If f ∈ L1(R) is such that f̂ ∈ L1(R, ) the Fourier inversion theorem

F−1(f̂ ) ≡ 1
2π

∫
R
e iu· f̂ (u)du = f a.e.

I One immediately has

‖f̂ ‖∞ ≤ ‖f ‖1, ‖f ‖∞ ≤
1
2π
‖f̂ ‖1

the (inverse) Fourier transformation is injective from L1 to L∞
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Notation and Preliminaries : Fourier transform

I f ∈ L1 ∩ L2, Plancherel’s theorem states that

‖f ‖2 =
1√
2π
‖f̂ ‖2, 〈f , g〉 =

1
2π
〈f̂ , ĝ〉

and
√
2πF extends continuously to an isometry from L2 to L2

I Some basic properties

1. F [f (· − k)](u) = e−iku f̂ (u)

2. F [f (a·)](u) = a−1 f̂ (u/a), a > 0

3. F [f ∗ g ](u) = f̂ (u)ĝ(u), F [f ∗ f (−·)](u) = |f̂ (u)|2

4. dN

(du)N
f̂ (u) =

∫
R f (x)(−ix)Ne−ixudx , (iu)N f̂ (u) = F

[
DN f

]
(u)

I Fourier transform F maps the Schwartz space S(R) into itself.
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Notation and Preliminaries : Fourier transform

I Instead of R the group is (0, 2π] with addtion modulo 2π, we have similar

results.

I In particular, any 2π-periodic f ∈ L2((0, 2π]), decomposes into its Fourier

series

f =
∑
k∈Z

cke
ik·, in L2((0, 2π]), ck ≡ ck(f ) =

1
2π

∫ 2π

0
f (x)e−ikxdx , {ck} ∈ `2

I in fact, f 7→ {cl} gives a Hilbert space isometry between L2((0, 2π]) and

`2 If, further, {ck} ∈ `1, then the Fourier series of f converges a.e. on

(0, 2π] (pointwise if f is continuous)
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Notation and Preliminaries : Fourier transform

I Fourier inversion and Fourier series can be linked to each other by the

Poisson summation formula: if f ∈ L1(R), then the periodised sum

S(x) =
∑
l∈Z

f (x + 2πl), x ∈ (0, 2π]

converges a.e., belongs to L1((0, 2π]) and the Fourier coefficients of S are

given by

ck(S) =
1
2π

f̂ (k) = F−1[f ](−k)
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Notation and Preliminaries : The Schwartz space

I Define a countable familiy of seminorms on S(R)

‖f ‖m,r = max
α≤r

∥∥∥(1 + | · |2
)m

f (α)
∥∥∥
∞
, m, r ∈ N ∪ {0}

these seminorms provide a metrisable locally convex topology on S(R)

I S(R) is complete, and the set C∞0 (R) is dense in S(R)
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Notation and Preliminaries : The Schwartz space

I S∗ ≡ S(R)∗ is the topological dual space of S(R), tempered distributions,

or Schwartz distributions, equipped with the weak topology: Tn → T in

S∗ if Tn(φ)→ T (φ) for every φ ∈ S

I Weak differentiation is continuous operation from S∗ to S∗

I µ is a finite measure or any signed measure of at most polynomial growth

at ±∞(|µ|(x ; |x | < R) .
(
1 + |R|2

)l for all R > 0, some l ∈ N)

then, the action of µ on S(R) defines an element of S∗(R).

f 7→
∫
R
fdµ

I any f ∈ Lp acting on S(R) by φ 7→
∫
f φ defines an element of S∗(R)
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Notation and Preliminaries : The Schwartz space

I Fourier transform of T ∈ S∗ as the element FT of S∗ whose action on S

is given by

φ 7→ FT (φ) = T (φ̂)

I For T = f ∈ L1,∫
R
f̂ (u)φ(u)du =

∫
R

∫
R
e−iux f (x)φ(u)dudx =

∫
R
f (u)φ̂(u)du

In particular, the Fourier transform maps S∗ continuously onto itself, and

F−1[FT ] = T in S∗.

I We can by the same principles define periodic Schwartz distributions. For

A any interval (0,a]
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Approximate Identities

I Convolution with Kernels

I For f : R→ R, we can define the convolution

Kh ∗ f (x) =

∫
R
Kh(x − y)f (y)dy =

∫
R
f (x − y)Kh(y)dy = f ∗ Kh(x)

of f with a suitably ’localised’ kernel function

Kh(x) =
1
h
K
(x
h

)
, h > 0, x ∈ R

where K is typically chosen to be bounded and integrable and in particular

satisfies
∫
R K(x)dx = 1

I so as h→ 0 the function Kh looks more and more like a point mass δ0 at 0

f ∗ Kh ∼ f ∗ δ0 =

∫
R
f (x − y)dδ0(y) = f (x)
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Approximate Identities

Proposition (4.1.1)

Let f : R→ R, be a measurable function, and let K ∈ L1 satisfy∫
R K(x)dx = 1.

1. If f is bounded on R and continuous at x ∈ R, then Kh ∗ f (x) converges

to f (x) as h→ 0.

2. If f is bounded and uniformly continuous on R, then ‖Kh ∗ f − f ‖∞ → 0

as h→ 0

3. If f ∈ Lp for some 1 ≤ p <∞, then ‖Kh ∗ f − f ‖p → 0 as h→ 0
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Ortho-normal basis

I Let L ⊂ Z be an index set. A family of functions {el : l ∈ L} ⊂ L2(A) is
called an ortho-normal basis.

1. 〈ek , el 〉 = 0 whenever k 6= l and 〈el , el 〉 = ‖el‖22 = 1 otherwise.

2. if the linear span ∑
l∈L

clel : cl ∈ R


is norm-dense in L2(A)
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Projection kernel

I V the closed subspace of L2(A) genertated by the linear span of

{el : l ∈ L′} for some subset L′ ⊂ L,

I πV (f ) is the best L2 -approximation of f from the subspace V .

πV (f )(x) =
∑
l∈L′
〈f , el〉 el(x) =

∫
A

∑
l∈L′

el(x)el(y)f (y)dy

I we define the projection kernel

πV (f )(x) =

∫
A

KV (x , y)f (y)dy , KV (x , y) =
∑
l∈L′

el(x)el(y)

I We shall now discuss some classical examples of ortho-normal bases of L2

including some basic historical examples of wavelet bases, which will be

introduced in full generality later.
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The Trigonometric Basis

I If A = (0, 1], then the trigonometric basis of L2((0, 1]) consists of the

complex trigonometric polynomials{
el = e2πil = cos(2πl ·) + i sin(2πl ·) : l ∈ Z

}
I The partial sums can be represented as

SN(f )(x) =
∑
〈f , el〉 el(x) =

∫ 1

0
DN(x − y)f (y)dy = DN ∗ f (x)

where

DN(x) =
∑
|l|≤N

e2πilx =
sin((2N + 1)πx)

sin(πx)
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I Dirichlet kernel, Proposition 4.1.1. does not hold, DN is not bounded

uniformly in L1(A)

I Convergence of SN(f )→ f in Lp(A), p 6= 2, or in Cu(A) does not hold in

general

I One way around this problem is based Fejer kernel

Fm =
1

m + 1

m∑
k=0

Dk
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The Haar Basis

I
{
φjk ≡ 2j/2φ

(
2j(·)− k

)
, k ∈ Z

}
, j ∈ N ∪ {0}

I Partition R into dyadic intervals (k/2j , (k + 1)/2j ]

I Kj(x , y) = 2jK
(
2jx , 2jy

)
=
∑

k∈Z 2
jφ
(
2jx − k

)
φ
(
2jy − k

)
=∑

k∈Z φjk(x)φjk(y)

I It has some comparable approximation properties
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Proposition (4.1.2)

Let f : R→ R be a measurable function, and let K be the Haar projection

kernel.

1. If f is bounded on R and continuous at x ∈ R, then Kj(f )(x) converges to

f (x) as j →∞.

2. If f is bounded and uniformly continuous on R, then ‖Kj(f )− f ‖∞ → 0

as j →∞

3. If f ∈ Lp for some 1 ≤ p <∞, then ‖Kj(f )− f ‖p → 0 as j →∞
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The Haar Basis

I Kj(f )

Kj(f ) = K0(f ) +

j−1∑
l=0

(Kl+1(f )− Kl(f ))

an elementary computation shows that

Kl+1(f )− Kl(f ) =
∑
k∈Z

〈ψlk , f 〉ψlk

where ψ = 1[0,1/2] − 1(1/2,1], ψlk(x) = 2l/2ψ
(
2lx − k

)
f =

∑
k∈Z

〈φk , f 〉φk +
∞∑
l=0

∑
k∈Z

〈ψlk , f 〉ψlk

I {φk , ψlk : k ∈ Z, l ∈ N ∪ {0}} forms an ortho-normal basis of L2 known as

the Haar basis.
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The Shannon Basis

I Consider a function f ∈ Vπ, where Vπ is the space of continuous functions

f ∈ L2 which have (distributional) Fourier transform f̂ supported in [−π, π]

I express f̂ with trigonometric basis.

f̂ =
∑
k∈Z

cke
ik(·), in L2([−π, π])

with Fourier coefficients given by

ck = ck(f̂ ) =
1
2π

∫ π

−π
e−iku f̂ (u)du = f (−k)

the last identity following from (4.5) if f ∈ L1

f (x) =
1
2π

∑
k∈Z

ck

∫ π

−π
e iu(k+x)du

=
∑
k∈Z

f (k)
sinπ(x − k)

π(x − k)
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The Shannon Basis

I φ(X ) = sin(πx)/(πx)

I φ̂ = 1[−π,π], and its interger translates of the function φ are ortho-normal

in L2. (by Plancherel’s theorem.)

I {φk = φ(· − k) : k ∈ Z} is an ortho-normal in Vπ

I
{
φjk = 2j/2φ

(
2j(·)− k

)
: k ∈ Z

}
span V2jπ

I The projection of f ∈ L2(R) onto V2jπ is

ΠV2jπ
(f ) =

∑
k

〈φjk , f 〉φjk
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I Like, haar basis, we can telescope these projections, by set ψ

ψ = F−1 [1[−2π,−π] + 1[π,2π]
]

I the functions
{
ψlk = 2l/2ψ

(
2l · −k

)
: k ∈ Z

}
form an ortho-normal basis

for Wl = V2lπ 	 V2l−1π

I f

f =
∑
k

〈φk , f 〉φk +
∞∑
l=0

∑
k

〈ψlk , f 〉ψlk

I the ortho-normal ’Shannon’ basis {φk , ψlk : k ∈ Z, l ∈ N ∪ {0}}

I We would like to construct ortho-normal bases of L2 that are in a sense

interpolating’ between the Haar and Shannon bases, and this is what leads

to wavelet theory, as we shall see later.
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Approximation in Sobolev Spaces by General Integral Operators

I Consider the general framework of integral operators.

I f 7→ Kh(f ) =
∫
R Kh(·, y)f (y)dy = 1

h

∫
R K

( ·
h
, y
h

)
f (y)dy , h > 0

I Calderon-Zygmund operators, with the obvious notational conversion

h = 2−j
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Proposition (4.1.3)

Let f : R→ R be a measurable function, let Kh be as above and suppose that∫
R supv∈R |K(v , v − u)|du <∞,

∫
R K(x , y)dy = 1 for every x ∈ R. Then we

have

1. If f is bounded on R and continuous at x ∈ R, then Kh(f )(x) converges to

f (x) as h→ 0.

2. If f is bounded and uniformly continuous on R, then ‖Kh(f )− f ‖∞ → 0

as h→ 0

3. If f ∈ Lp for some 1 ≤ p| <∞, then ‖Kh(f )− f ‖p → 0 as h→ 0

27/32



I To investigate further approximation properties we shall impose following
conditions.

– (M) : cN(K) ≡
∫
R supv∈R |K(v , v − u)||u|Ndu <∞

– (P): For every v ∈ R and k = 1, . . . ,N − 1

∫
R
K(v , v + u)du = 1 and

∫
R
K(v , v + u)ukdu = 0
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Proposition (4.1.5)

Let K be a kernel that satisfies Condition (M), (P) for some N ∈ N and let

c(m,K) = cm(K)

∫ 1

0

(1− t)m−1

(m − 1)!
dt

for any integer m ≤ N.

1. If f ∈ Hm
p (R), 1 ≤ p <∞, then

‖Kh(f )− f ‖p ≤ c(m,K) ‖Dmf ‖p h
m

2. If f ∈ Cm(R), then

‖Kh(f )− f ‖∞ ≤ c(m,K)
∥∥∥f (m)

∥∥∥
∞

hm
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Littlewood-paley Decomposition

I The main idea behind the Haar and Shannon bases of L2 was a partition

of unity either in the time or the frequency domain.

I However, the functions used in the partition are not smooth or indicatios

of intervals.

I Use smooth functions, relaxing the requirement of orthgonality of the

functions involved.
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Littlewood-paley Decomposition

I Take φ ∈ S(R) to be symmetric function such that

φ̂ ∈ C∞0 (R), supp(φ̂) ∈ [−1, 1], φ̂ = 1 on
[
−3
4
,
3
4

]
Define, moreover,

ψ̂ = φ̂
( ·
2

)
− φ̂ equivalentto ψ = 2φ(2·)− φ

so that ψ̂ is supported in
{
2−1 ≤ |u| ≤ 2

}
. If we set ψ2−j = 2jψ

(
2j .
)
,

then ψ2−j = ψ̂
(
·/2j
)
, and by a telescoping sum, for every u ∈ R

φ̂(u) +
∞∑
j=0

ψ̂
(
u/2j

)
= lim

J→∞

(
φ̂(u) +

J−1∑
j=0

ψ̂
(
u/2j

))
= lim

J
φ̂
(
u/2J

)
= 1
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Littlewood-paley Decomposition

I For f with Fourier transform f̂ (u) and every u ∈ R,

f̂ (u) = f̂ (u)φ̂(u) +
∞∑
i=0

ψ̂
(
u/2j

)
f̂ (u)

I Then, f is

f = f ∗ φ+
∞∑
j=0

f ∗ ψ2−j = lim
J→∞

f ∗ φ2−j

where φ2− − J = 2Jφ
(
2J ·
)

I since φ̂(0) = 1, we see that
∫
φ = 1, and since φ ∈ S(R), we conclude

from Proposition 4.1 .1 that the last limit holds in Lp whenever f ∈ Lp

I Moreover,
∫
R x

kφ(x)dx equals zero for every k ∈ N because DkF [φ](0)

does, so Proposition 4.1 .5 applies for every N with h = 2−j .
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