Mathematical Foundations of Infinite-Dimensional Statistical Models:
4.1 Definitions and Basic Approximation Theory

이종진

Seoul National University
ga0408@snu.ac.kr

July 06, 2018

Notation and Preliminaries

- $L_{p}(A), L_{\infty}(A)$
- $\mathrm{C}(\mathrm{A})$ denotes the space of continuous functions on A
- $C_{u}(A)$ denotes the space of uniformly continuous functions on A.
- $C_{p e r}(A)$ denotes the space of continuous periodic functions on A , $f(a)=f(b)$, when A is a half-open bounded interval with endpoints a, b
- The L_{p} - Sobolev space of order $m \in \mathbb{N}$

$$
H_{p}^{m}(A)=\left\{f \in L^{p}: D^{j} f \in L^{p} \forall j=1, \ldots, m:\|f\|_{H_{p}^{m}(A)} \equiv\|f\|_{p}+\left\|D^{m} f\right\|_{p}<\infty\right\}
$$

Notation and Preliminaries: Weak derivative

- For $A \subseteq \mathbb{R}$ an interval, a function $f \in L^{P}(A)$ is said to be weakly differentiable if there exists a locally integrable function $D f$ - the weak derivative of f - such that

$$
\int_{A} f(u) \phi^{\prime}(u) d u=-\int_{A} D f(u) \phi(u) d u
$$

for every infinitely differentiable function ϕ of compact support in the interior of A.

- The L_{p} - Sobolev space of order $m \in \mathbb{N}$
$H_{p}^{m}(A)=\left\{f \in L^{p}: D^{j} f \in L^{p} \forall j=1, \ldots, m:\|f\|_{H_{p}^{m}(A)} \equiv\|f\|_{p}+\left\|D^{m} f\right\|_{p}<\infty\right\}$

Notation and Preliminaries

- $C^{m}(A)$,

$$
C^{m}(A)=\left\{f^{(j)} \in C_{u}(A): \forall j=1, \ldots, m:\|f\|_{C^{m}(A)} \equiv\|f\|_{\infty}+\left\|f^{(m)}\right\|_{p}<\infty\right\}
$$

- $C^{\infty}(A)$ denotes the space of infinitely differentiable functions defined on A
- $C_{0}^{\infty}(A)$ is the subspace which consists of all $\phi \in C^{\infty}(A)$ that have compact support in the interior of A .
- Schwartz space $S(\mathbb{R})$ consists of all functions $f \in C^{\infty}(\mathbb{R})$ such that all derivatives $f^{(\alpha)}, \alpha \geq 0$, exist and decay at $\pm \infty$ faster than any inverse polynomial.

Notation and Preliminaries: Convolution

- For measurable functions f, g, defined on \mathbb{R}, their convolution is

$$
f * g(x) \equiv \int_{\mathbb{R}} f(x-y) g(y) d y, x \in \mathbb{R}
$$

- If $f \in L^{P}(\mathbb{R}), g \in L^{q}(\mathbb{R}), 1 \leq p, q \leq \infty$ such that $1 / p+1 / q=1$ then, $f * g \in C(\mathbb{R})$ and $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$ (Hölder's inequality)
- If $f \in L^{P}(\mathbb{R}), g \in L^{1}(\mathbb{R})$
then, $f * g$ is well defined a.e., and $\|f * g\|_{p} \leq\|f\|_{\rho}\|g\|_{1}$ (Minkowski's inequality)
- If $f \in C(\mathbb{R}), g \in L^{1}(\mathbb{R})$
then, $f * g$ is defined everywhere, and $f * g \in C(\mathbb{R})$

Notation and Preliminaries: Convolution

- We can also define

$$
f * \mu(x)=\int_{\mathbb{R}} f(x-y) d \mu(y), \quad x \in \mathbb{R}
$$

for $\mu \in M(\mathbb{R})$, where $M(\mathbb{R})$ denotes the spaces of finite signed measures on \mathbb{R}, and one has likewise $\|f * \mu\|_{p} \leq\|f\|_{p}|\mu|(\mathbb{R})$, where $|\mu|$ is the total variation measure of μ.

Notation and Preliminaries: Fourier transform

- For a function $f \in L^{1}(\mathbb{R})$, Fourier transform

$$
\mathcal{F}[f](u) \equiv \hat{f}(u)=\int_{\mathbb{R}} f(x) e^{i t x} d x, u \in \mathbb{R}
$$

- If $f \in L^{1}(\mathbb{R})$ is such that $\hat{f} \in L^{1}(\mathbb{R}$,$) the Fourier inversion theorem$

$$
\mathcal{F}^{-1}(\hat{f}) \equiv \frac{1}{2 \pi} \int_{\mathbb{R}} e^{i u \cdot} \hat{f}(u) d u=f \quad \text { a.e. }
$$

- One immediately has

$$
\|\hat{f}\|_{\infty} \leq\|f\|_{1}, \quad\|f\|_{\infty} \leq \frac{1}{2 \pi}\|\hat{f}\|_{1}
$$

the (inverse) Fourier transformation is injective from L^{1} to L^{∞}

Notation and Preliminaries: Fourier transform

- $f \in L^{1} \cap L^{2}$, Plancherel's theorem states that

$$
\|f\|_{2}=\frac{1}{\sqrt{2 \pi}}\|\hat{f}\|_{2}, \quad\langle f, g\rangle=\frac{1}{2 \pi}\langle\hat{f}, \hat{g}\rangle
$$

and $\sqrt{2 \pi} \mathcal{F}$ extends continuously to an isometry from L^{2} to L^{2}

- Some basic properties

$$
\begin{aligned}
& \text { 1. } \mathcal{F}[f(\cdot-k)](u)=e^{-i k u} \hat{f}(u) \\
& \text { 2. } \mathcal{F}[f(a \cdot)](u)=a^{-1} \hat{f}(u / a), \quad a>0 \\
& \text { 3. } \mathcal{F}[f * g](u)=\hat{f}(u) \hat{g}(u), \quad \mathcal{F}[f * \overline{f(-)}]](u)=|\hat{f}(u)|^{2} \\
& \text { 4. } \frac{d^{N}}{(d u)^{N}} \hat{f}(u)=\int_{\mathbb{R}} f(x)(-i x)^{N} e^{-i x u} d x,(i u)^{\hat{f}} \hat{f}(u)=\mathcal{F}\left[D^{N} f\right](u)
\end{aligned}
$$

- Fourier transform \mathcal{F} maps the Schwartz space $\mathcal{S}(\mathbb{R})$ into itself.

Notation and Preliminaries: Fourier transform

- Instead of \mathbb{R} the group is $(0,2 \pi$] with addtion modulo 2π, we have similar results.
- In particular, any 2π-periodic $f \in L^{2}((0,2 \pi])$, decomposes into its Fourier series

$$
f=\sum_{k \in \mathbb{Z}} c_{k} e^{i k \cdot}, \text { in } L^{2}((0,2 \pi]), \quad c_{k} \equiv c_{k}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i k x} d x,\left\{c_{k}\right\} \in \ell_{2}
$$

- in fact, $f \mapsto\left\{c_{l}\right\}$ gives a Hilbert space isometry between $L^{2}((0,2 \pi])$ and ℓ_{2} If, further, $\left\{c_{k}\right\} \in \ell_{1}$, then the Fourier series of f converges a.e. on $(0,2 \pi]$ (pointwise if f is continuous)

Notation and Preliminaries: Fourier transform

- Fourier inversion and Fourier series can be linked to each other by the Poisson summation formula: if $f \in L^{1}(\mathbb{R})$, then the periodised sum

$$
S(x)=\sum_{I \in \mathbb{Z}} f(x+2 \pi I), \quad x \in(0,2 \pi]
$$

converges a.e., belongs to $L^{1}((0,2 \pi])$ and the Fourier coefficients of S are given by

$$
c_{k}(S)=\frac{1}{2 \pi} \hat{f}(k)=\mathcal{F}^{-1}[f](-k)
$$

Notation and Preliminaries: The Schwartz space

- Define a countable familiy of seminorms on $\mathcal{S}(\mathbb{R})$

$$
\|f\|_{m, r}=\max _{\alpha \leq r}\left\|\left(1+|\cdot|^{2}\right)^{m} f^{(\alpha)}\right\|_{\infty}, \quad m, r \in \mathbb{N} \cup\{0\}
$$

these seminorms provide a metrisable locally convex topology on $\mathcal{S}(\mathbb{R})$

- $\mathcal{S}(\mathbb{R})$ is complete, and the set $C_{0}^{\infty}(\mathbb{R})$ is dense in $\mathcal{S}(\mathbb{R})$

Notation and Preliminaries: The Schwartz space

- $\mathcal{S}^{*} \equiv \mathcal{S}(\mathbb{R})^{*}$ is the topological dual space of $\mathcal{S}(\mathbb{R})$, tempered distributions, or Schwartz distributions, equipped with the weak topology: $T_{n} \rightarrow T$ in \mathcal{S}^{*} if $T_{n}(\phi) \rightarrow T(\phi)$ for every $\phi \in \mathcal{S}$
- Weak differentiation is continuous operation from \mathcal{S}^{*} to \mathcal{S}^{*}
- μ is a finite measure or any signed measure of at most polynomial growth at $\pm \infty\left(|\mu|(x ;|x|<R) \lesssim\left(1+|R|^{2}\right)^{\prime}\right.$ for all $R>0$, some $\left.I \in \mathbb{N}\right)$ then, the action of μ on $\mathcal{S}(\mathbb{R})$ defines an element of $\mathcal{S}^{*}(\mathbb{R})$.

$$
f \mapsto \int_{\mathbb{R}} f d \mu
$$

- any $f \in L^{p}$ acting on $\mathcal{S}(\mathbb{R})$ by $\phi \mapsto \int f \phi$ defines an element of $\mathcal{S}^{*}(\mathbb{R})$

Notation and Preliminaries: The Schwartz space

- Fourier transform of $T \in \mathcal{S}^{*}$ as the element $\mathcal{F} T$ of \mathcal{S}^{*} whose action on \mathcal{S} is given by

$$
\phi \mapsto \mathcal{F} T(\phi)=T(\hat{\phi})
$$

- For $T=f \in L^{1}$,

$$
\int_{\mathbb{R}} \hat{f}(u) \phi(u) d u=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i u x} f(x) \phi(u) d u d x=\int_{\mathbb{R}} f(u) \hat{\phi}(u) d u
$$

In particular, the Fourier transform maps \mathcal{S}^{*} continuously onto itself, and $\mathcal{F}^{-1}[\mathcal{F} T]=T$ in \mathcal{S}^{*}.

- We can by the same principles define periodic Schwartz distributions. For A any interval $(0, a]$

Approximate Identities

- Convolution with Kernels
- For $f: \mathbb{R} \rightarrow \mathbb{R}$, we can define the convolution

$$
K_{h} * f(x)=\int_{\mathbb{R}} K_{h}(x-y) f(y) d y=\int_{\mathbb{R}} f(x-y) K_{h}(y) d y=f * K_{h}(x)
$$

of f with a suitably 'localised' kernel function

$$
K_{h}(x)=\frac{1}{h} K\left(\frac{x}{h}\right), \quad h>0, x \in \mathbb{R}
$$

where K is typically chosen to be bounded and integrable and in particular satisfies $\int_{\mathbb{R}} K(x) d x=1$

- so as $h \rightarrow 0$ the function K_{h} looks more and more like a point mass δ_{0} at 0

$$
f * K_{h} \sim f * \delta_{0}=\int_{\mathbb{R}} f(x-y) d \delta_{0}(y)=f(x)
$$

Approximate Identities

Proposition (4.1.1)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$, be a measurable function, and let $K \in L^{1}$ satisfy
$\int_{\mathbb{R}} K(x) d x=1$.

1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_{h} * f(x)$ converges to $f(x)$ as $h \rightarrow 0$.
2. If f is bounded and uniformly continuous on \mathbb{R}, then $\left\|K_{h} * f-f\right\|_{\infty} \rightarrow 0$ as $h \rightarrow 0$
3. If $f \in L^{p}$ for some $1 \leq p<\infty$, then $\left\|K_{h} * f-f\right\|_{p} \rightarrow 0$ as $h \rightarrow 0$

Ortho-normal basis

- Let $\mathcal{L} \subset \mathbb{Z}$ be an index set. A family of functions $\left\{e_{I}: I \in \mathcal{L}\right\} \subset L^{2}(A)$ is called an ortho-normal basis.

1. $\left\langle e_{k}, e_{l}\right\rangle=0$ whenever $k \neq I$ and $\left\langle e_{l}, e_{l}\right\rangle=\left\|e_{l}\right\|_{2}^{2}=1$ otherwise.
2. if the linear span

$$
\left\{\sum_{l \in \mathcal{L}} c_{l} e_{l}: c_{l} \in \mathbb{R}\right\}
$$

is norm-dense in $L^{2}(A)$

Projection kernel

- V the closed subspace of $L^{2}(A)$ genertated by the linear span of $\left\{e_{I}: I \in \mathcal{L}^{\prime}\right\}$ for some subset $\mathcal{L}^{\prime} \subset \mathcal{L}$,
- $\pi_{V}(f)$ is the best L^{2}-approximation of f from the subspace V.

$$
\pi_{v}(f)(x)=\sum_{l \in \mathcal{L}^{\prime}}\left\langle f, e_{l}\right\rangle e_{l}(x)=\int_{A} \sum_{l \in \mathcal{L}^{\prime}} e_{l}(x) e_{l}(y) f(y) d y
$$

- we define the projection kernel

$$
\pi_{V}(f)(x)=\int_{A} K_{V}(x, y) f(y) d y, \quad K_{V}(x, y)=\sum_{l \in \mathcal{L}^{\prime}} e_{l}(x) e_{l}(y)
$$

- We shall now discuss some classical examples of ortho-normal bases of L^{2} including some basic historical examples of wavelet bases, which will be introduced in full generality later.

The Trigonometric Basis

- If $A=(0,1]$, then the trigonometric basis of $L^{2}((0,1])$ consists of the complex trigonometric polynomials

$$
\left\{e_{I}=e^{2 \pi i l}=\cos (2 \pi / \cdot)+i \sin (2 \pi / \cdot): I \in \mathbb{Z}\right\}
$$

- The partial sums can be represented as

$$
S_{N}(f)(x)=\sum\left\langle f, e_{l}\right\rangle e_{l}(x)=\int_{0}^{1} D_{N}(x-y) f(y) d y=D_{N} * f(x)
$$

where

$$
D_{N}(x)=\sum_{|| | \leq N} e^{2 \pi i l x}=\frac{\sin ((2 N+1) \pi x)}{\sin (\pi x)}
$$

- Dirichlet kernel, Proposition 4.1.1. does not hold, D_{N} is not bounded uniformly in $L^{1}(A)$
- Convergence of $S_{N}(f) \rightarrow f$ in $L^{P}(A), p \neq 2$, or in $C_{u}(A)$ does not hold in general
- One way around this problem is based Fejer kernel

$$
F_{m}=\frac{1}{m+1} \sum_{k=0}^{m} D_{k}
$$

The Haar Basis

- $\left\{\phi_{j k} \equiv 2^{j / 2} \phi\left(2^{j}(\cdot)-k\right), k \in \mathbb{Z}\right\}, \quad j \in \mathbb{N} \cup\{0\}$
- Partition \mathbb{R} into dyadic intervals $\left(k / 2^{j},(k+1) / 2^{j}\right]$
- $K_{j}(x, y)=2^{j} K\left(2^{j} x, 2^{j} y\right)=\sum_{k \in \mathbb{Z}} 2^{j} \phi\left(2^{j} x-k\right) \phi\left(2^{j} y-k\right)=$ $\sum_{k \in \mathbb{Z}} \phi_{j k}(x) \phi_{j k}(y)$
- It has some comparable approximation properties

Proposition (4.1.2)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function, and let K be the Haar projection kernel.

1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_{j}(f)(x)$ converges to $f(x)$ as $j \rightarrow \infty$.
2. If f is bounded and uniformly continuous on \mathbb{R}, then $\left\|K_{j}(f)-f\right\|_{\infty} \rightarrow 0$ as $j \rightarrow \infty$
3. If $f \in L^{p}$ for some $1 \leq p<\infty$, then $\left\|K_{j}(f)-f\right\|_{p} \rightarrow 0$ as $j \rightarrow \infty$

The Haar Basis

- $K_{j}(f)$

$$
K_{j}(f)=K_{0}(f)+\sum_{l=0}^{j-1}\left(K_{l+1}(f)-K_{l}(f)\right)
$$

an elementary computation shows that

$$
K_{l+1}(f)-K_{l}(f)=\sum_{k \in \mathbb{Z}}\left\langle\psi_{l k}, f\right\rangle \psi_{l k}
$$

where $\psi=1_{[0,1 / 2]}-1_{(1 / 2,1]}, \psi_{l k}(x)=2^{1 / 2} \psi\left(2^{\prime} x-k\right)$

$$
f=\sum_{k \in \mathbb{Z}}\left\langle\phi_{k}, f\right\rangle \phi_{k}+\sum_{l=0}^{\infty} \sum_{k \in \mathbb{Z}}\left\langle\psi_{l k}, f\right\rangle \psi_{l k}
$$

- $\left\{\phi_{k}, \psi_{l k}: k \in \mathbb{Z}, I \in \mathbb{N} \cup\{0\}\right\}$ forms an ortho-normal basis of L^{2} known as the Haar basis.

The Shannon Basis

- Consider a function $f \in \mathcal{V}_{\pi}$, where \mathcal{V}_{π} is the space of continuous functions $f \in L^{2}$ which have (distributional) Fourier transform \hat{f} supported in $[-\pi, \pi]$
- express \hat{f} with trigonometric basis.

$$
\hat{f}=\sum_{k \in \mathbb{Z}} c_{k} e^{i k(\cdot)}, \quad \text { in } L^{2}([-\pi, \pi])
$$

with Fourier coefficients given by

$$
c_{k}=c_{k}(\hat{f})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k u} \hat{f}(u) d u=f(-k)
$$

the last identity following from (4.5) if $f \in L^{1}$

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} c_{k} \int_{-\pi}^{\pi} e^{i u(k+x)} d u \\
& =\sum_{k \in \mathbb{Z}} f(k) \frac{\sin \pi(x-k)}{\pi(x-k)}
\end{aligned}
$$

The Shannon Basis

- $\phi(X)=\sin (\pi x) /(\pi x)$
- $\hat{\phi}=1_{[-\pi, \pi]}$, and its interger translates of the function ϕ are ortho-normal in L^{2}. (by Plancherel's theorem.)
- $\left\{\phi_{k}=\phi(\cdot-k): k \in \mathbb{Z}\right\}$ is an ortho-normal in \mathcal{V}_{π}
- $\left\{\phi_{j k}=2^{j / 2} \phi\left(2^{j}(\cdot)-k\right): k \in \mathbb{Z}\right\}$ span $\mathcal{V}_{2^{j} \pi}$
- The projection of $f \in L^{2}(\mathbb{R})$ onto $\mathcal{V}_{2^{j} \pi}$ is

$$
\Pi_{\mathcal{V}_{2 j} \pi}(f)=\sum_{k}\left\langle\phi_{j k}, f\right\rangle \phi_{j k}
$$

- Like, haar basis, we can telescope these projections, by set ψ

$$
\psi=\mathcal{F}^{-1}\left[1_{[-2 \pi,-\pi]}+1_{[\pi, 2 \pi]}\right]
$$

- the functions $\left\{\psi_{l k}=2^{1 / 2} \psi\left(2^{\prime} \cdot-k\right): k \in \mathbb{Z}\right\}$ form an ortho-normal basis for $W_{l}=\mathcal{V}_{2^{\prime} \pi} \ominus \mathcal{V}_{2^{I-1} \pi}$
- f

$$
f=\sum_{k}\left\langle\phi_{k}, f\right\rangle \phi_{k}+\sum_{l=0}^{\infty} \sum_{k}\left\langle\psi_{l k}, f\right\rangle \psi_{l k}
$$

- the ortho-normal 'Shannon' basis $\left\{\phi_{k}, \psi_{l k}: k \in \mathbb{Z}, I \in \mathbb{N} \cup\{0\}\right\}$
- We would like to construct ortho-normal bases of L^{2} that are in a sense interpolating' between the Haar and Shannon bases, and this is what leads to wavelet theory, as we shall see later.

Approximation in Sobolev Spaces by General Integral Operators

- Consider the general framework of integral operators.
- $f \mapsto K_{h}(f)=\int_{\mathbb{R}} K_{h}(\cdot, y) f(y) d y=\frac{1}{h} \int_{\mathbb{R}} K\left(\dot{\bar{h}}, \frac{y}{h}\right) f(y) d y, \quad h>0$
- Calderon-Zygmund operators, with the obvious notational conversion $h=2^{-j}$

Proposition (4.1.3)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function, let K_{h} be as above and suppose that $\int_{\mathbb{R}} \sup _{v \in \mathbb{R}}|K(v, v-u)| d u<\infty, \int_{\mathbb{R}} K(x, y) d y=1$ for every $x \in \mathbb{R}$. Then we have

1. If f is bounded on \mathbb{R} and continuous at $x \in \mathbb{R}$, then $K_{h}(f)(x)$ converges to $f(x)$ as $h \rightarrow 0$.
2. If f is bounded and uniformly continuous on \mathbb{R}, then $\left\|K_{h}(f)-f\right\|_{\infty} \rightarrow 0$ as $h \rightarrow 0$
3. If $f \in L^{p}$ for some $1 \leq p \mid<\infty$, then $\left\|K_{h}(f)-f\right\|_{p} \rightarrow 0$ as $h \rightarrow 0$

- To investigate further approximation properties we shall impose following conditions.
$-(\boldsymbol{M}): c_{N}(K) \equiv \int_{\mathbb{R}} \sup _{v \in \mathbb{R}}|K(v, v-u)||u|^{N} d u<\infty$
- (P): For every $v \in \mathbb{R}$ and $k=1, \ldots, N-1$

$$
\int_{\mathbb{R}} K(v, v+u) d u=1 \quad \text { and } \quad \int_{\mathbb{R}} K(v, v+u) u^{k} d u=0
$$

Proposition (4.1.5)
Let K be a kernel that satisfies Condition (M), (\boldsymbol{P}) for some $N \in \mathbb{N}$ and let

$$
c(m, K)=c_{m}(K) \int_{0}^{1} \frac{(1-t)^{m-1}}{(m-1)!} d t
$$

for any integer $m \leq N$.

1. If $f \in H_{p}^{m}(\mathbb{R}), 1 \leq p<\infty$, then

$$
\left\|K_{h}(f)-f\right\|_{p} \leq c(m, K)\left\|D^{m} f\right\|_{p} h^{m}
$$

2. If $f \in C^{m}(\mathbb{R})$, then

$$
\left\|K_{h}(f)-f\right\|_{\infty} \leq c(m, K)\left\|f^{(m)}\right\|_{\infty} h^{m}
$$

Littlewood-paley Decomposition

- The main idea behind the Haar and Shannon bases of L^{2} was a partition of unity either in the time or the frequency domain.
- However, the functions used in the partition are not smooth or indicatios of intervals.
- Use smooth functions, relaxing the requirement of orthgonality of the functions involved.

Littlewood-paley Decomposition

- Take $\phi \in \mathcal{S}(\mathbb{R})$ to be symmetric function such that

$$
\hat{\phi} \in C_{0}^{\infty}(\mathbb{R}), \quad \operatorname{supp}(\hat{\phi}) \in[-1,1], \quad \hat{\phi}=1 \text { on }\left[-\frac{3}{4}, \frac{3}{4}\right]
$$

Define, moreover,

$$
\hat{\psi}=\hat{\phi}\left(\frac{\dot{2}}{2}\right)-\hat{\phi} \quad \text { equivalentto } \quad \psi=2 \phi(2 \cdot)-\phi
$$

so that $\hat{\psi}$ is supported in $\left\{2^{-1} \leq|u| \leq 2\right\}$. If we set $\psi_{2^{-j}}=2^{j} \psi\left(2^{j}.\right)$, then $\overline{\psi_{2-j}}=\hat{\psi}\left(\cdot / 2^{j}\right)$, and by a telescoping sum, for every $u \in \mathbb{R}$

$$
\hat{\phi}(u)+\sum_{j=0}^{\infty} \hat{\psi}\left(u / 2^{j}\right)=\lim _{J \rightarrow \infty}\left(\hat{\phi}(u)+\sum_{j=0}^{J-1} \hat{\psi}\left(u / 2^{j}\right)\right)=\lim _{J} \hat{\phi}\left(u / 2^{J}\right)=1
$$

Littlewood-paley Decomposition

- For f with Fourier transform $\hat{f}(u)$ and every $u \in \mathbb{R}$,

$$
\hat{f}(u)=\hat{f}(u) \hat{\phi}(u)+\sum_{i=0}^{\infty} \hat{\psi}\left(u / 2^{j}\right) \hat{f}(u)
$$

- Then, f is

$$
f=f * \phi+\sum_{j=0}^{\infty} f * \psi_{2-j}=\lim _{J \rightarrow \infty} f * \phi_{2^{-j}}
$$

where $\phi_{2^{-}}-J=2^{J} \phi\left(2^{J}.\right)$

- since $\hat{\phi}(0)=1$, we see that $\int \phi=1$, and since $\phi \in \mathcal{S}(\mathbb{R})$, we conclude from Proposition 4.1.1 that the last limit holds in L^{p} whenever $f \in L^{p}$
- Moreover, $\int_{\mathbb{R}} x^{k} \phi(x) d x$ equals zero for every $k \in \mathbb{N}$ because $D^{k} \mathcal{F}[\phi](0)$ does, so Proposition 4.1.5 applies for every N with $h=2^{-j}$.

